Submit Manuscript  

Article Details


The Use of Electrospun Scaffolds in Musculoskeletal Tissue Engineering: A Focus on Tendon and the Rotator Cuff

[ Vol. 13 , Issue. 8 ]

Author(s):

Edward T Stace, Navraj S Nagra*, Saket Tibrewal, Wasim Khan and Andrew J Carr   Pages 619 - 631 ( 13 )

Abstract:


Introduction: Rotator Cuff tears affect 15% of 60 year olds and carry a significant social and financial burden. Current operative techniques and repair adjuncts are associated with unacceptably high failure rates, stimulating investigation into novel tissue engineering and regenerative medicine (TERM) approaches in the field of rotator cuff surgery. In this review we explore the most recent advances in the field of electrospinning, focussing on proposed tissue-engineered solutions in tendon, specifically the rotator cuff.

Methods: The MEDLINE/PubMed database was reviewed for English language papers and publication date within the last 5 years, using the search string “electrospinning AND tendon”.

Results: Of 38 results, eighteen studies were included in the final analysis. Common themes identified included (1) drug/biological molecule delivery (2) using novel and biological materials in manufacture (3) increased mechanical strengths of materials, and, (4) techniques to improve the nanotopographical properties – of electrospun scaffolds. Human tissue was used in less than 15% of studies to determine cytocompatibility. Varying study designs were observed often employing differing outcome measures making direct comparisons and conclusions challenging.

Conclusion: This review summarises the most current scientific knowledge in the study of TERM in tendon and the rotator cuff field and electrospinning techniques. We found that as knowledge of the pathology behind rotator cuff tears is furthered, specific molecules, mechanical properties and nanotopographical features are being incorporated into electrospun scaffolds.

Keywords:

Tendon, Rotator cuff, electropinning, scaffolds, tissue engineering, drug delivery, mechanical properties.

Affiliation:

Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford, Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford



Read Full-Text article